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a,p=const>O 

arP(P"') 

where 2, is a Bessel function of first order and first or second kind depending on the type 
of the complex quantity F~. Here the solution e has a fairly complex form 

( erp(-aar~-(!.z) 

The one-dimensional case of a cvlindrical screw flow described by the exact solution of 
system (4.2) 

cp = conat * exp (-ar9, a = const > 0 

which corresponds to the velocity field 
0e = er-' (1 - exp (-ar*)], 0X = 2a1~, 

lends itself to clearer interpretation. The solution is identical with the known solution 
for a time-limited state of a rectilinear vortex stretching in axial flow (Burgers vortex). 
The solution was used by a number of authors as a heuristic model of a twisted external flow, 
while studying the mechanism of vortex collapse /?/. The magnitude of the constant a can be 
estimated from the condition v~, uz = 0 (I): a - 8-l corresponding to the experimental results 
obtained by Garg /7/. 
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ON STRONG TRANSITIONS BETWEEN STRUCTURES OF DIFFERING SYMMETRY ACCOMPANYING 
WEAKLY SUPERCRITICAL CONVECTION* 

B.A. MALOMED and M.I. TRIBEL'SKII 

A complete classification of the phase space of the dynamical systemwhich 
describes the motion of a liquid when there is weakly supercritical con- 
vection is carried out within the framework of a six-mode Galerkin approxi- 
mation. It is shown that all the phase trajectories are attracted to the 
corresponding stationary states. The domains of attraction to each of 
these states are found. The minimum value of a perturbation, which 
converts a weakly stable solution of one syaraetry into a stable solution 
of another symmetry when the parameters of the problem are closetotheir 
bifurcation values, is estimated. 
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It is known that, in certain cases when there is weakly super- 

critical convection, two types of stationary spatially periodic flows may 

arise which, in typical situations, are cellular hexagonal structures and 

structures in the form of two dimensional axles. When this is so, both 

types of structures are found to be stable with respect to small pertur- 

bations in a certain domain of the values of the parameters of the problem 

so that strong transitions between them become possible under the action 

of perturbations of finite amplitude /l-3/. In such cases the question 

as to the minimum amplitude of a perturbation which converts a structure 

of one symmetry into a structure of another symmetry, and questions 

relating to this regarding a complete classification of the possible 

asymptotic states of the dynamical system under consideration and the 

domains of attraction of different initial conditionstotheseasymptotic 

states are of interest. This paper is concerned with investigating these 

questions. 

Let us start out from the system of equations obtained in /l/ rn a finite mode (Galerkin) 

approximation, a rigorous proof of which is given in /4/. In this approximationthecomponents 

of the velocity vector for a convective flow and the perturbation of the temperature profile 

can be represented in the form 

ji ( AJ cos (wr) + Bj sin (qp)) f (4 

Here, r is a two dimensional radius vector lying in the horizontal plane (itisassumed 

that the convection layer has an infinite extension in this plane), the z-axis is directed 

along the gravitational force and the two dimensional vectors q1 satisfy the relationship 

1 q1[ = 191 I = I93 1; ‘11 + qz + qs = 0. In this case the problem reduces to determining the 

quantities A, (t) and B1(l). for which the closed system 

%I'= sz, - I z, I % - 2p (1 z, 12 + I z, II)Z, - 2czz,*z,* (2) 
follows from the equations of hydrodynamics in the third order of perturbation theory (a 

further two equations are obtained from (2) by cyclic permutation of the indices 1, 2 and 3) 

The dot denotes a derivative with respect to time t; z, 3 A, f iR,; e is the bifurcation 

parameter of the problem, which is proportional to (fi -RJR,, where R is a dimensionless 

quantity (the Rayleigh number) which is proportional to the difference in the temperatures 

between the lower and upper surfaces of the convection layer and R, is that value of R at 

which the resting liquid loses stability with respect to perturbations which may be as small 

as may be desired and lead to the occurrence of convective motion. 

Eq.(2) is written in a suitable manner using dimensionless variables whereupon the 

numerical values of the real positive coefficients p and a depend on the actual formulation 

of the convection problem (the form of the boundary conditions, etc.). In typical cases, 

these quantities satisfy the relationships p-l and a<1 and the whole of the approxi- 

mation being considered is applicable subject to the condition that Is I< 1. Moreover, in 

the majority of convection problems, p satisfies the inequality II> I/, and this is sub- 

sequently assumed. 

In proceeding to an analysis of system (2) we note that it belongs to the so-called 

systems of gradient form, that is, it can be written as 

zj' = -aHlaZ,* (3) 

where the pseudo-Hamiltonian H (the Lyapunov function) is defined using the right-hand side 
of (2). It follows from (3) that 

H’ = - 2 x ( aH/aZ, I* s - 2 3 ) 2,’ )a< 0 
j f 

Hence, all of the phase trajectories of system (2) must tend to certain stationary points 
which are local extrema of the quantity H (for large 1 ZI, thelatter increases monotonically 

as lZl increases which, when accounts is taken of (4), does not permit the phase trajectories 

of system (2) to go "to infinity"). 

Hence, in order to provide a complete description of the qualitative properties of 

system (2), it is sufficient to find all the singular points and to determine the form of the 
separatrix surface which define the boundaries of the domains of attraction of the various 

stable singular points. 

Next, we note that the initial hydrodynamic problem possesses obvious symmetry with 

respect to a translation in the horizontal plane by an arbitrary constant vector a. The 

rotation: 
‘J - Zaxp @bJ) (5) 
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corresponds to the transformation r+r + a in Z-space, where the phases qjs are connected 
by the relationship qp1 -t$n $qr = 0. In order to eliminate degeneracy due to the existence 
of this symmetry it is convenient to transform from the variables 2 to the new independent 
variables I which are invariant with respect to the transformation (5). There are just four 
independent invariants for which, for example, the following may be taken: 

I I, I. a = I z** *. a I’, I, = Im V&Za) 

We may choose ml., = art3 ZI. ,' as the two remaining variables which extend the four-dimensional 
phase space (6) up to the six dimensional space of system (2). The equations for I and cp, 
which are obtained from (2), have the form 

I,' = 2 {el, - I,' - 2p (I, + I,)I, - 2al,} (7) 
1,' = {3e - (4P + 1)(1, + I, -t I*))I, (8) 
'pi = 2aZ,lZ, (I, E Re (Z,ZG,)) (9) 

(the equations for 1, and 1, follow from (7) on cyclic permutation of the indices 1, 2 and 3) 
By taking account of the fact that the invariant I, is connected with II+,,,,, by the 

relationship Ib’ = I,i,IS - Ido, we obtain that the four Eqs.('l) and (8) for the invariants 
form a closed subsystem. This means that the six-dimensional phase space of system (2) is 
stratified into, generally speaking, two-dimensional manifolds (the orbits of the transform- 
ation (5)), which are defined by the equations I, = con&. 

Next, we note that, in the four-dimensional phase space of system (7), (81, there is a 
three-dimensional invariant subspace, i.e. the hyperplane I, = 0. It follows from (8) that 
the phase trajectories of system (7), (8) are repelled from this hyperplane in the domain 

11 + 1, f I, < 3c/(4p + 1) 

and attracted to it outside of this domain. 
surface I1 + 1, _t 1, = 3s/(+ + i), which, 

The above-mentioned hyperplane I, = 0 and the 
in six-dimensional Z-space , corresponds to a sphere 

with its centre at the origin of coordinates , are the zero-isoclines of Eq.(8). It is easy 
to show by means of simple calculations that there is no singular point of Eqs.(2) on the 
surface of this sphere. 

This means that all the singular points of system (71, (8) lie on the hyperplane I, = 0. 

It follows from this and what has been said previously that, at sufficiently large values of 
t, all the phase trajectories of system (7), (8) which do not belong to the above-mentioned 
hyperplane must approach it asymptotically. It is for this reason that all the information 
concerning the asymptotic behaviour of system (7) and (8) (and, consequently,alsoconcerning 
the initial system (2)) can be extracted from an analysis of its phase protraitin the in- 
variant subspace I, = 0. When this is done, by using the transformation (51, all equivalent 
trajectories can be reduced to those for which ImZ, = ImZ, = ImZ, = 0, i.e. Z, I A,. 

It is seen that the dynamical system which is obtained in this case has six invariant 
planes -4, ==kdl(j# 1) which play an important role in the analysis of its phase portrait. 

Of course, corresponding invariant subspaces also exist in Eqs.(7)-(9) and in the initial 
system (2). The existence of these invariant manifolds (and also of the manifold 1,=0) is 
not accidentally associated with the occurrence of a certain symmetry in the problems. Thus, 
apart from the translational symmetry which has been noted above, the problem is symmetric 
with respect to a complex conjugate transformation (whence, the invariance of the manifold 

I,= 0) and with respect to permutations associated with the renumbering of the basis vectors 

911 PI and q, (the invariance of the planes AJ=+.~I). For the above-mentioned reasons the 
invariance of these manifolds is not destroyed when account is taken in (2) of the corrections 
associated with the higher orders of perturbation theory which lead to the appearance of 
terms -En, where n>4 on the right-hand side of (2). 

In particular, it follows from this that the lines of intersection of the invariant 
planes, that is, the lines defined by the equations fAi==,&Ara *Aa, where each sign is 
selected independently', arepoint phase trajectories of this system: 

Let us now consider the subsystem which is obtained on reducing this dynamical system 
on one of the above-mentioned invariant planes. To be specific, let us select the plane 
Al-R, (Figs.l-3). The corresponding dynamical equations have the form 

A, = sA, - A,’ - 2+ (Al’ + A,‘) A, - hAlA, (10) 

A* = sA, - A,’ - 4&‘A, - hA,’ 

(on reduction onto the plane A, - -A,, a system is obtained which differs from (10) in 

the sign in front of the coefficient a). 
Apart from the trivial singular point A* - A, - 0 , system (10) has the following 

singular points /4/: 
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(11) 

(W 

(13) 

Fig.1 Fig.2 

Fig.3 

(the signs in front of A, and the square root sign in (12) are chosen independently). It can 

be seen from (1) that the points (11) correspond to shafts while the points (12) correspond 

to hexagons. The points (13) correspond to a new stationary state, that is, to warped 

hexagons. 

By taking account of the synknetry of the problem, it is readily seen that, in the three 

dimensional phase space (A,,A,,A,) th ere are six singular points of type (111, each of 

which simultaneously belongs to two invariant planes, eight singular points of type (121, 

each of which simultaneously belongs to three invariant planes and twelve singular points of 

type (13) through each of which just a single invariant plane passes. Allowing forthetrivial 

singular point at the origin of coordinates the total number of singular points is equal to 

6 + 8 + 12 + 1 = 27. 
On the other hand, the systemofthree cubic equationswhich is obtained from (2) when 

2,' ='Z,' = 2,' =a 0 has not more than 3' real solutions, that is, all the non-trivial singular 
points of the system lying in the phase space (A,, A,,AJ are taken up by the points (ll)- 

(13). 
A subdivision of this three-dimensional phase space into the domains of attraction of 

the different stable stationary states can be synthesized from the two-dimensional phase 
portraits of a reduced system of the type of (101, to the study of which we shall now pass. 
In doing this we shall denote the singular points (11) by RI,,, where the index I refers to 

the left point (A,= -f/3 and r refers to the right point (A, = vz) . The singular points 
(12) which correspond to the larger values of 1 A 1 (the upper sign) are denoted by the letter 
H and those corresponding to the smaller values of IA 1 (the lower sign) are denoted by H' 
while points of the type of (131 are denoted by the letter S. 

In describing the bifurcations we shall assume that the magnitude of cc is fixed and 
study the change in the stability of the individual solutions as the supercriticalityparameter 
s /4/ is increased. Furthermore, since the phase picture in Figs.(l)-(3) is symmetrical about 
the A, axis, we shall confine ourselves to the description of that part of it which lies in 

the upper half plane (the phase picture in the plane Ai = -A, is obtained fromtheanalogous 
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picture on the Ar = Aa plane upon its mirror reflection with respect to the A, axis. This 
removes the apparent asymmetry of the problem associated with the different form of the phase 
portrait of system (10) in the right-hand and left-hand half planes of Figs.l-3). 

The analysis leads to the following results. 
lo. When e < edo = -d(4 + I)., not one of the singular points (ll)-(13) exists. The 

sole singular point of system (10) is the trivial singular point A, = A,=0 (the stable 
node). 

2O. When c = ewn a complex singular point H(H'), a saddle node is created in the 
phase plane (A,,A,) which, when e>e,,,ua, is split into a stable node H which corresponds 
to stable hexagons and a saddle H'. Moreover, at the "moment" e = e,mln, the finite domain of 
attraction to the point H(H’) arises from the discontinuity. The latter is explained by 
the fact that, when O( cmq -e< led,, I, the point H(R') exists in a virtual form: the 

trajectories are attracted to the site where it must appear and then pass out onto the point 
0 along a direction close to the unstable separatrix to be* H’O (see Fig.1, where a phase 
portrait of system (10) is given when ermD. < e < 0 (the ellipse (2~ + I) Al’ + 2p (A, f cd2p)’ = 

e + a’l2k which is one of the branches of the zero-isocline A; = 0 is represented by the 
broken lines in Figs-l-3) and the second branch of the zero-isocline coincides with the A8 
axis). 

In the domain O<e - e,tia<lem,nI the minimum amplitude 6A,t, of a perturbation which 
destroys the weakly stable hexagonal structure, that is, which transfers the system from the 
stable point H to beyond the separatrix IfZ’r (Fig.l), is estimated by the expression 

6Ati" - G------ -emin (14) 

It can be shown that, in the phase space (A,, A,,A,), the shortest distance form the point 
?I to the separatrix of the surface is the distance between 
estimate (14) may be replaced by the rigorous expression: 

%nrI=2 V- -&zz 

In the general case the estimation of &do is based 

the points H and H' so that the 

onthafact that, when there are 

bifurcations of the type under consideration, the direction along which the separatrix surface 
approaches closest of all to the weakly stable singular point is close to the direction of 
the eigenvector associated with the greatest characteristic index of this point (that is the 
smallest in absolute magnitude). We note that, at the moment of bifurcation, the correspond- 
ing characteristic index must vanish and, hence, such vectors cannot have components which 
are transverse to the hyperplane I,= 0. It follows from this that perturbations with B,#O 
which transform the system from a weakly stable singular point through the separatrix surface 
always have an amplitude which is larger than the analogous perturbations with BjzO. What 
has been said clarifies why, in the estimation of 6A,,,, it is possible to confine oneself 
withintheframeworkofthe three-dimensional phase space (A,.& Al). 

3O. When e is increased further, the saddle H' passes through the point Oat the "moment" 
e= 0, converting it into an unstable node. When e> 0, the point H' passes into the right- 
hand plane and two new singular points (11) are generated from the point 0. These two new 
points are Rt and R, which, in the three dimensional phase space (Al,A,,A,) possessasaddle 
instability up to the "moment" e = es (Fig.2). 

4O. When e = es, two saddles S (13) originate from the point Rl which, when, e>eR, 
pass out, one into the upper and one into the lower half plane of the plane Ai = Al (Fig.3). 
At the same time the point RI becomes a stable node, corresponding to stable shafts, the 
domain of attraction to which in the plane A, = A, is restricted to the stable separatrix 
of the saddle S which is split off from the semi-axis A,<0 when e = es. Similar changes 
occur in the phase portrait in the neighbourhocd of the point &but the saddles which are 
generated from it when e = es lie in the A, = -Aa plane. 

The value of 6Ad" in the domain O<e-ee<ea is estimated using a relationship 
which is analogous to (14) after replacing sti. by es. 

5O. On further increasing c the point S approaches the point H and, when t=e-3 

2 (P + I) ea, passes through this point, imparting to it a saddle instability. Moreover, at 
the moment of bifurcation, that is, when e=e-. the two characteristic indices of the 
points S in the three-dimensional phase space (A,, Aa, A,) simultaneously change sign. For 
instance, in the case of the point S, shown in Fig.3, the unstable characteristic direction 
lying, when e<emx in the invariant plane A, = A, becomes stable when e>ayI while 
the characteristic direction which does not belong to this plane and is stable when s-zh. 
is made unstable when e> +. 

Hence, when s>ti the points R, corresponding to shafts, will be the only stable 
singular points of the dynamical system under consideration. 



The separatrix surfaces which, when s-C&&W, bound the domains of attraction of the 
points H in the space (Ar,A,,Aa) have a third-order axis of symmetry Off which is the line 
of intersection of the three planes of symmetry. In the case of the point H shown in Fiq.3, 
these planes are Al =-A,; A, = Aa and A, = -A,. A cross-section of the separatrix surface 
corresponding to this point in a plane which is orthogonal to the straight line OH is shown 
in Fig.4 (the cross-section of the domain of attraction to the point H is hatched in). 

As e + emx (E < em,) these separatrix surfaces approximate to surfaces of symmetry and, 
when e = elhar, the domains of attraction to the points H collapse into two dimensional 
manifolds, each of which consists of three sectors lying in the corresponding symmetry planes. 
In the case of the point H under consideration (Fig.3) in the plane A, = A, such a sector 
is bounded by the bisectors of the first and fourth coordinate angle. 

Fig.4 

The estimate 
8&W - emax - e 05) 

holds for the quantity ~A,,,I,, in the domain 0< emax -e<&m . 
The difference between (15) and the square root law (14) is due to the fact that, when 

e = smax , neither points S or points H are either generated or disappear but onlypassthrough 
one another. It is for this reason that, in the law describing their displacement in phase 
space as e is varied, the point e - emax is regular. 

The authorsthankV.1. Arnol'd, A.B. Givental', G.M. Zaslavskii, A.S. Monina and A.A. 
Nepomnyashchii for discussing the results. 
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